Organ-dependent oxylipin signature in leaves and roots of salinized tomato plants (Solanum lycopersicum).

نویسندگان

  • Michel Edmond Ghanem
  • Mohamed Ali Ghars
  • Patrick Frettinger
  • Francisco Pérez-Alfocea
  • Stanley Lutts
  • Jean-Paul Wathelet
  • Patrick du Jardin
  • Marie-Laure Fauconnier
چکیده

Oxylipins have been extensively studied in plant defense mechanisms or as signal molecules. Depending on the stress origin (e.g. wounding, insect, pathogen), and also on the plant species or organ, a specific oxylipin signature can be generated. Salt stress is frequently associated with secondary stress such as oxidative damage. Little is known about the damage caused to lipids under salt stress conditions, especially with respect to oxylipins. In order to determine if an organ-specific oxylipin signature could be observed during salt stress, tomato (Solanum lycopersicum cv. Money Maker) plants were submitted to salt stress (100 mM of NaCl) for a 30-d period. A complete oxylipin profiling and LOX related-gene expression measurement were achieved in leaves and roots. As expected, salt stress provoked premature senescence in leaves, as revealed by a decrease in photosystem II efficiency (F(v)/F(m) ratio) and sodium accumulation in leaves. In roots, a significant decrease in several oxylipins (9- and 13-hydro(pero)xy linole(n)ic acids, keto and divinyl ether derivatives) was initiated at day 5 and intensified at day 21 after salt treatment, whereas jasmonic acid content increased. In leaves, the main changes in oxylipins were observed later (at day 30), with an increase in some 9- and 13-hydro(pero)xy linole(n)ic acids and a decrease in some keto-derivatives and in jasmonic acid. Oxylipin enantiomeric characterization revealed that almost all compounds were formed enzymatically, and therefore a massive auto-oxidation of lipids that can be encountered in abscission processes can be excluded here.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants

Following exposure to salinity, the root/shoot ratio is increased (an important adaptive response) due to the rapid inhibition of shoot growth (which limits plant productivity) while root growth is maintained. Both processes may be regulated by changes in plant hormone concentrations. Tomato plants (Solanum lycopersicum L. cv Moneymaker) were cultivated hydroponically for 3 weeks under high sal...

متن کامل

The Solanum lycopersicum WRKY3 Transcription Factor SlWRKY3 Is Involved in Salt Stress Tolerance in Tomato

Salinity threatens productivity of economically important crops such as tomato (Solanum lycopersicum L.). WRKY transcription factors appear, from a growing body of knowledge, as important regulators of abiotic stresses tolerance. Tomato SlWRKY3 is a nuclear protein binding to the consensus CGTTGACC/T W box. SlWRKY3 is preferentially expressed in aged organs, and is rapidly induced by NaCl, KCl,...

متن کامل

Effect of partial rootzone drying on the concentration of zeatin-type cytokinins in tomato (Solanum lycopersicum L.) xylem sap and leaves.

Decreased cytokinin (CK) export from roots in drying soil might provide a root-to-shoot signal impacting on shoot physiology. Although several studies show that soil drying decreases the CK concentration of xylem sap collected from the roots, it is not known whether this alters xylem CK concentration ([CK(xyl)]) in the leaves and bulk leaf CK concentration. Tomato (Solanum lycopersicum L.) plan...

متن کامل

High atmospheric carbon dioxide-dependent alleviation of salt stress is linked to RESPIRATORY BURST OXIDASE 1 (RBOH1)-dependent H2O2 production in tomato (Solanum lycopersicum)

Plants acclimate rapidly to stressful environmental conditions. Increasing atmospheric CO2 levels are predicted to influence tolerance to stresses such as soil salinity but the mechanisms are poorly understood. To resolve this issue, tomato (Solanum lycopersicum) plants were grown under ambient (380 μmol mol(-1)) or high (760 μmol mol(-1)) CO2 in the absence or presence of sodium chloride (100m...

متن کامل

Root-synthesized cytokinins improve shoot growth and fruit yield in salinized tomato (Solanum lycopersicum L.) plants

Salinity limits crop productivity, in part by decreasing shoot concentrations of the growth-promoting and senescence-delaying hormones cytokinins. Since constitutive cytokinin overproduction may have pleiotropic effects on plant development, two approaches assessed whether specific root-localized transgenic IPT (a key enzyme for cytokinin biosynthesis) gene expression could substantially improv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of plant physiology

دوره 169 11  شماره 

صفحات  -

تاریخ انتشار 2012